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Abstract

GUI programming in Go is a little bit tricky. The infamous issue re-
garding interacting with legacy, GUI frameworks is that most graphics
related APIs must be called from the main thread. The issue violates the
concurrent nature of Go: A goroutine maybe arbitrarily and randomly
scheduled or rescheduled on different running threads, i.e., the same piece
of code will be called from different threads over time, even without evolv-
ing the go keyword.

Background
In multithreaded programming, operating systems provide space, the so-called
Thread Local Storage (TLS) for each thread of a process to store their private
and local content. In the era where multithreaded programming and scheduling
algorithms are not rich enough, the TLS feature was handy to avoid data race
since this storage is purely local and guaranteed by the operating system.

For example, a graphics rendering backend such as OpenGL Context was de-
signed to store each thread’s rendering context on TLS; In macOS, the famous
GUI framework Cocoa also requires rendering user interfaces on a specific thread,
which is the so-called main thread.

The Main Thread
In Go, as we know that a goroutine will be scheduled to different threads due
to its internal work-stealing scheduler [1] [2].

With a work-stealing scheduler, goroutines are not promised to run on a specific
thread forever. Instead, whenever a goroutine goes to sleep or entering a system
call, or the Go runtime proactively interrupts the execution of that goroutine,
it is likely to be rescheduled to a different thread. Therefore, if an (OpenGL)
rendering context is stored on the old thread, switching to a new thread will
cause the old context’s loss. Because such an interruption can happen
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at any time and anywhere, it is impossible to check if the goroutine
remains on the same thread when the execution resumes.

The original intention of designing such a scheduler is to eliminate the concept
of system thread and multiplex it. In this way, users will not suffer from paying
the cost of threads switch/sleep, whereas threads always in their full power mode
that is continuously running tasks either from the user or the runtime.

Method runtime.LockOSThread and Package mainthread

If GUI applications must interact with the OS on the main thread, how can we
achieve the goal of running a specific thread permanently? Luckily, there is a
method called LockOSThread offered from the runtime package, provides the
same feature we want:

// LockOSThread wires the calling goroutine to its current operating
// system thread.
// The calling goroutine will always execute in that thread,
// and no other goroutine will execute in it,
// until the calling goroutine has made as many calls to
// UnlockOSThread as to LockOSThread.
// If the calling goroutine exits without unlocking the thread,
// the thread will be terminated.
//
// All init functions are run on the startup thread. Calling
// LockOSThread from an init function will cause the main function
// to be invoked on that thread.
//
// A goroutine should call LockOSThread before calling OS services or
// non-Go library functions that depend on per-thread state.
func LockOSThread()

As the LockOSThread document says: All init functions run on the startup
thread. Calling LockOSThread from an init function will cause the primary
function to be invoked on that thread.

If we think about that carefully, we will immediately realize this allows us to
identify, at least, the main thread. When we would like to wrapping thread
scheduling as a package mainthread, we can do something like the following::

package mainthread // import "x/mainthread"

import "runtime"

func init() {
runtime.LockOSThread()

}
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// Init initializes the functionality of running arbitrary subsequent
// functions be called on the main system thread.
//
// Init must be called in the main.main function.
func Init(main func())

// Call calls f on the main thread and blocks until f finishes.
func Call(f func())

As a user of such a package, one can:

package main

func main() {
mainthread.Init(fn)

}

func fn() {
// ... do what ever we want to do in main ...

}

func gn() {
// Wherever gn is running, the call will be executed on
// the main thread.
mainthread.Call(func() {

// ... do whatever we want to run on the main thread ...
})

}

Once we solved API design, the next question is: How can we implement the
Init and Call?

Well, it is not that difficult. Recall that we use Init method to obtain the main
thread’s full control, then we should never give up such power. Thus, creating
another goroutine to run what we initially want to run and use a channel to
receive the calls that we would like to schedule on the main thread becomes our
only option:

// funcQ is a global channel that responsible for receiving function
// calls that needs to run on the main thread.
var funcQ = make(chan func(), runtime.GOMAXPROCS(0))

func Init(main func()) {
done := make(chan struct{})
go func() {

main()
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// main function terminates, signal and terminate
// the main thread too.
done <- struct{}{}

}()

for {
select {
case f := <-funcQ:

f()
case <-done:

return
}

}
}

Since we have the global funcQ, scheduling a function via that channel becomes
an easy work:

// Call calls f on the main thread and blocks until f finishes.
func Call(f func()) {

done := make(chan struct{})
funcQ <- func() {

f()
done <- struct{}{}

}
<-done

}

Note that we use empty struct as our channel signal; if you are not
familiar with empty struct and channels, you might want to read
two great posts from Dave Cheney [6] [7].

To use such a package, one can use mainthread.Call to schedule a call to be
executed on the main thread:

package main

import "x/mainthread"

func main() {
mainthread.Init(fn)

}

func fn() {
done := make(chan struct{})
go gn(done)
<-done

}
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func gn(done chan<- struct{}) {
mainthread.Call(func() {

println("call on the main thread.")
})
done <- struct{}{}

}

Creating A Window with glfw using mainthread

Whenever we need to wrap a window package, such as initializing glfw [3]:

package app // import "x/app"

import (
"x/mainthread"

"github.com/go-gl/glfw/v3.3/glfw"
)

// Init initializes an app environment.
func Init() (err error) {

mainthread.Call(func() { err = glfw.Init() })
return

}

// Terminate terminates the entire application.
func Terminate() {

mainthread.Call(glfw.Terminate)
}

Furthermore, make sure critical calls like glfw.WaitEventsTimeout inside the
rendering loop always be executed from the main thread:

package app // import "x/app"

// Win is a window.
type Win struct {

win *glfw.Window
}

// NewWindow constructs a new graphical window.
func NewWindow() (*Win, error) {

var (
w = &Win{}
err error

)
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mainthread.Call(func() {
w.win, err = glfw.CreateWindow(640, 480,

"golang.design/research", nil, nil)
if err != nil {

return
}

})
if err != nil {

return nil, err
}
w.win.MakeContextCurrent()
return w, nil

}

// Run runs the given window and blocks until it is destroied.
func (w *Win) Run() {

for !w.win.ShouldClose() {
w.win.SwapBuffers()
mainthread.Call(func() {

// This function must be called from the main thread.
glfw.WaitEventsTimeout(1.0 / 30)

})
}
// This function must be called from the mainthread.
mainthread.Call(w.win.Destroy)

}

As a user of the app package, we can get rid of the understanding overhead
regarding when and how should we call a function on the main thread::

package main

import (
"x/app"
"x/mainthread"

)

func main() {
mainthread.Init(fn)

}

func fn() {
err := app.Init()
if err != nil {

panic(err)
}
defer app.Terminate()
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w, err := app.NewWindow()
if err != nil {

panic(err)
}
w.Run()

}

Now, we have an empty solid window and will never crash randomly �.

Cost Analysis and Optimization
After implementing a first iteration of the mainthread package, we might di-
rectly wonder about this package’s performance. A question could be:

What is the latency when calling such a function if it is transmitted from a thread
to the main thread?

Let us write a few benchmark tests that can measure the performance of such a
call. The idea is straightforward, and we need a baseline to identify the initial
cost of calling a function, then measure the completion time when we schedule
the same function call on the main thread:

var f = func() {}
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// Baseline: call f() directly.
func BenchmarkDirectCall(b *testing.B) {

b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {

f()
}

}

// MainthreadCall: call f() on the mainthread.
func BenchmarkMainThreadCall(b *testing.B) {

mainthread.Init(func() {
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {

mainthread.Call(f)
}

})
}

Be careful with micro-benchmarks here: Referring to our previous discussion
about the time measurement of benchmarks [4], let us use the benchmarking
tool [5]. The bench is a tool for executing Go benchmarks reliably, and it
automatically locks the machine’s performance and executes benchmarks 10x
by default to eliminate system measurement error:

$ bench
goos: darwin
goarch: arm64
pkg: x/mainthread-naive
...

name time/op
DirectCall-8 0.95ns ±1%
MainThreadCall-8 448ns ±0%

name alloc/op
DirectCall-8 0.00B
MainThreadCall-8 120B ±0%

name allocs/op
DirectCall-8 0.00
MainThreadCall-8 2.00 ±0%

The benchmark result indicates that calling an empty function directly in Go
will 1ns whereas schedule the same empty function to the main thread will
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spend 448ns. Thus the cost is 447ns.

Moreover, when we talk about cost, we care about the cost of CPU and memory
consumption. According to the second report regarding allocs/op, the result
shows scheduling an empty function to the mainthread will cost 120B allocation.

Allocation of 120B per operation might not be a big deal from our first impres-
sion. However, if we consider the actual use case of this package, i.e., managing
GUI rendering calls, either CPU or memory allocation can be propagated to a
considerable cost over time. If we are dealing with rendering, especially graph-
ical rendering, the new rate is typically a minimum of 25fps, ideally 30fps or
even higher.

That means, for every 5 minutes, without considering mouse button, movements,
and keystrokes, a GUI application will allocate at least:

5 × 60 × 30 × 120byte = 1.08MiB

A direct impact from an excessive allocation behavior is the runtime garbage
collector and the scavenger. With a higher allocation rate, the garbage collector
is triggered more often, and the scavenger releases memory to the OS more
often. Because more works are produced for the GC, the GC will also consume
more CPU from the system. It is good enough to say the entire application is
a vicious circle.

The following is trace information of that above application runs in 6 minutes,
and the total heap allocation is 1.41 MiB (2113536-630784 byte), pretty close
to what we predicted before.
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Where does the allocation occur? How can we deal with these issues? How to
optimize the existing naive implementation? Let us find out in the next section.

Optimal Threading Control
The first optimization comes to the attempt to avoid allocating channels. In
our Call implementation, we allocate a signal channel for every function that
we need to call from the main thread:

// Call calls f on the main thread and blocks until f finishes.
func Call(f func()) {

done := make(chan struct{}) // allocation!
funcQ <- func() {

f()
done <- struct{}{}

}
<-done

}

Thus, whenever we call the Call method, we will have to allocate at least 96
bytes for a channel due to the Go compiler will uses runtime.hchan as the
struct that represents the channel under the hood:

// in src/runtime/chan.go

// the hchan struct needs 96 bytes.
type hchan struct {

qcount uint
dataqsiz uint
buf unsafe.Pointer
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elemsize uint16
closed uint32
elemtype *_type
sendx uint
recvx uint
recvq waitq
sendq waitq
lock mutex

}

A well-known trick to avoid repetitive allocation is to use the sync.Pool. One
can:

var donePool = sync.Pool{New: func() interface{} {
return make(chan struct{})

}}

func Call(f func()) {
// reuse signal channel via sync.Pool!
done := donePool.Get().(chan struct{})
defer donePool.Put(done)

funcQ <- func() {
f()
done <- struct{}{}

}
<-done

}

With that simple optimization, a benchmarked result indicates an 80% reduction
of memory usage:

name old time/op new time/op delta
DirectCall-8 0.95ns ±1% 0.95ns ±1% ~ (p=0.631 n=10+10)
MainThreadCall-8 448ns ±0% 440ns ±0% -1.83% (p=0.000 n=9+9)

name old alloc/op new alloc/op delta
DirectCall-8 0.00B 0.00B ~ (all equal)
MainThreadCall-8 120B ±0% 24B ±0% -80.00% (p=0.000 n=10+10)

name old allocs/op new allocs/op delta
DirectCall-8 0.00 0.00 ~ (all equal)
MainThreadCall-8 2.00 ±0% 1.00 ±0% -50.00% (p=0.000 n=10+10)

Can we do it even better? The answer is yes. One can notice that there is still
a 24B of allocation per operation. However, to identify it becomes somewhat
tricky.

In Go, variables can be allocated from heap if:
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1. Using make and new keywords explicitly, or
2. Escape from the stack

The second case is a little bit advance from the regular use of Go. To be
short, escape from the execution stack to the heap is decided from compile time.
The Go’s compiler will decide when a variable should be allocated on the heap.
Deciding to allocate variables either on the stack or the heap is called escape
analysis.

The great thing about Go is that this information is trackable and can be enabled
directly from the Go toolchain. One can use -gcflags="-m" to activate the
escape analysis and see the result from the compile-time:

$ go build -gcflags="-m"
./mainthread.go:52:11: can inline Call.func1
./mainthread.go:48:11: leaking param: f
./mainthread.go:52:11: func literal escapes to heap

The compiler shows us that the sending function is leaking, and the wrapper
function that sends via our funcQ is causing the function literal escaping to
the heap. The function literal escapes to the heap because a function literal
is considered a pointer, and sending a pointer via channel will always cause an
escape by design.

To avoid the escaping function literal, instead of using a function wrapper, we
can send a struct:

type funcdata struct {
fn func()
done chan struct{}

}

func Call(f func()) {
done := donePool.Get().(chan struct{})
defer donePool.Put(done)

funcQ <- funcdata{fn: f, done: done} // wrap the information
<-done

}

and when we receive the funcdata:

func Init(main func()) {
...

for {
select {
case fdata := <-funcQ:

fdata.fn()
fdata.done <- struct{}{}
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case <-done:
return

}
}

}

After such an optimization, a re-benchmarked result indicates that we hint the
zero-allocation goal:

name old time/op new time/op delta
DirectCall-8 0.95ns ±1% 0.95ns ±1% ~ (p=0.896 n=10+10)
MainThreadCall-8 448ns ±0% 366ns ±1% -18.17% (p=0.000 n=9+9)

name old alloc/op new alloc/op delta
DirectCall-8 0.00B 0.00B ~ (all equal)
MainThreadCall-8 120B ±0% 0B -100.00% (p=0.000 n=10+10)

name old allocs/op new allocs/op delta
DirectCall-8 0.00 0.00 ~ (all equal)
MainThreadCall-8 2.00 ±0% 0.00 -100.00% (p=0.000 n=10+10)

Hooray! �

Verification and Discussion
Before we conclude this research, let us do a final verification on the real-world
example that we had before: the GUI application.

While a re-evaluation, we can see from the trace file that the entire application
is still allocating memory and the heap is still increasing:
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Notably, the total allocated bytes during the application life cycle (6 minutes)
only allocates:

958464 − 622592 = 0.32MiB

Compared to the previous 1.41 MiB allocation, we optimized 1.08 MiB of mem-
ory, which we precisely predicted before.

We might still wonder if scheduling is not allocating memory anymore, who is
still allocating the memory? To find out, we need a little bit of help from the
runtime package. The compiler translates the allocation operation to a runtime
function runtime.newobject. One can add 3 more lines and prints, which is
exactly calling this function using runtime.FuncForPC:

// src/runtime/malloc.go
func newobject(typ *_type) unsafe.Pointer {

f := FuncForPC(getcallerpc()) // add this
l, ll := f.FileLine(getcallerpc()) // add this
println(typ.size, f.Name(), l, ll) // add this
return mallocgc(typ.size, typ, true)

}

In the above, the getcallerpc is a runtime private helper. If we execute the
application again, we will see printed information similar to below:

88 runtime.acquireSudog /Users/changkun/dev/godev/go-github/src/runtime/proc.go 375
88 runtime.acquireSudog /Users/changkun/dev/godev/go-github/src/runtime/proc.go 375
88 runtime.acquireSudog /Users/changkun/dev/godev/go-github/src/runtime/proc.go 375
...

It demonstrates how and why the allocation still happens:

// ch <- elem
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

...
gp := getg()
mysg := acquireSudog()
...

}

//go:nosplit
func acquireSudog() *sudog {

mp := acquirem()
pp := mp.p.ptr()
if len(pp.sudogcache) == 0 {

lock(&sched.sudoglock)
for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {

s := sched.sudogcache
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sched.sudogcache = s.next
s.next = nil
pp.sudogcache = append(pp.sudogcache, s)

}
unlock(&sched.sudoglock)
if len(pp.sudogcache) == 0 {

pp.sudogcache = append(pp.sudogcache, new(sudog)) // !here
}

}
...

}

Unfortunately, this is entirely outside the control of the userland. We are not
able to optimize here anymore. Nevertheless, we have reached our goal for today,
and this is the best of what we can do so far.

One more thing, if we take a closer look into how much the heap grows for one
step, we will get some calculation like this: 671744-663552=8192 The result is,
in fact, the minimum allocation size of the runtime allocator, which allocates a
page. Since the discussion of such a topic has deviated from this research’s goal,
we leave that as a future outlook.

Conclusion
In this research, we covered the following topics:

1. The Go runtime scheduler
2. The Go runtime memory allocator
3. The Go runtime garbage collector
4. Scheduling on a specific thread, especially the main thread
5. Reliable benchmarking and allocations tracing techniques
6. Escape analysis
7. The channel implementation in Go

There are several points we can summarize:

1. A channel allocates 96 bytes of memory
2. A function literal allocate 24 bytes of memory
3. Escape analysis can help us identify unexpected allocations, and function

literal is considered as a pointer that always escapes to the heap
4. Sending information via a channel can cause allocation intrinsically from

the runtime.
5. Go runtime grows the heap 8K on each step as page allocation

We also encapsulated all the abstractions from this research and published two
packages: mainthread[9] and thread[10]. These packages allow us to schedule
any function calls either on the main thread or a specific thread. Furthermore,
We also submitted a pull request to the Fyne project[11], which could reduce
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a considerable amount of memory allocations from the existing real-world GUI
applications.

Have fun!
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